The Baum - Connes Assembly Map and the Generalized Bass

نویسنده

  • C. Ogle
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly Maps, K-Theory, and Hyperbolic Groups

C. OGLE Department of Mathematics, Ohio State University, Columbus, 0H43210, U.S.A. (Received: March 1992) Abstraet. Following Connes and Moscovici, we show that the Baum-Connes assembly map for K,(C~*n) is rationally injective when n is word-hyperbolic, implying the Equivariant Novikov conjecture for such groups. Using this result in topological K-theory and BoreI-Karoubi regulators, we also s...

متن کامل

K-theory for the Maximal Roe Algebra of Certain Expanders

We study in this paper the maximal version of the coarse BaumConnes assembly map for families of expanding graphs arising from residually finite groups. Unlike for the usual Roe algebra, we show that this assembly map is closely related to the (maximal) Baum-Connes assembly map for the group and is an isomorphism for a class of expanders. We also introduce a quantitative Baum-Connes assembly ma...

متن کامل

The Baum-connes Conjecture via Localization of Categories

We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this mor...

متن کامل

Split Injectivity of the Baum-connes Assembly Map

In this work, the continuously controlled techniques developed by Carlsson and Pedersen are used to prove that the Baum-Connes map is a split injection for groups satisfying certain geometric conditions.

متن کامل

2 5 Ju l 2 00 8 COARSE AND EQUIVARIANT CO - ASSEMBLY MAPS

We study an equivariant co-assembly map that is dual to the usual Baum–Connes assembly map and closely related to coarse geometry, equivariant Kasparov theory, and the existence of dual Dirac morphisms. As applications, we prove the existence of dual Dirac morphisms for groups with suitable compactifications, that is, satisfying the Carlsson–Pedersen condition, and we study a K–theoretic counte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007